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Abstract5

In this study, the recently found lead-lag relationship between Eurasian snow cover6

increase in October and wintertime precipitation totals on the Iberian Peninsula is re-7

visited and generalized to a broad range of atmospheric variables on the synoptic and8

local scale. To this aim, a robust (resistant to outliers) method for calculating the index9

value for Eurasian snow cover increase in October is proposed. This ‘Robust Snow10

Advance Index’ (RSAI) is positively correlated with the wintertime (DJF) frequency11

of cyclonic and westerly-flow circulation types over the Iberian Peninsula, while the12

corresponding relationship with anticyclonic and easterly-flow types is negative. For13

both cases, an explained variance of ∼ 60% indicates a strong and highly significant14

statistical link on the synoptic scale.15

Consistent with these findings, it is then shown that the lead-lag relationship equally16

holds for the DJF-mean conditions of 1) precipitation amount, 2) diurnal temperature17

range, 3) sun hours, 4) cloud cover, and 5) wind speed on the local scale. To assess if18

these target variables can be skillfully hindcasted, simple linear regression is applied19

as a statistical forecasting method, using the October RSAI as the only predictor vari-20

able. One-year out cross-validation yields locally significant hindcast correlations of21

up to ∼ 0.8, obtaining field significance for any of the five target variables mentioned22

above. The validity for a wide range of atmospheric variables and the consistency of23

the local- and synoptic-scale results affirm the question posed in the title.24

KEY WORDS: Seasonal Forecasting; Teleconnections; Statistical Forecasting; Snow Cover; Climate25

Variability, Iberian Peninsula26
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1. Introduction27

Wintertime precipitation totals on the Iberian Peninsula were recently found to be statistically related to28

Eurasian snow cover increase during the previous October (Brands et al. 2012). A possible dynamical29

pathway for this formerly unknown lead-lag relationship has been identified by observational and idealized30

generalized circulation model studies, linking Eurasian snow cover in fall to the Northern Hemisphere extra-31

tropical circulation during the following winter (Cohen and Entekhabi 1999; Saito et al. 2001; Gong et al.32

2003; Cohen et al. 2007; Fletcher et al. 2007, 2009; Smith et al. 2011; Mote and Kutney 2012), the latter33

commonly described by the Arctic Oscillation (Kutzbach 1970; Thompson and Wallace 1998).34

Following the conceptual model in Cohen et al. (2007), a positive snow-cover anomaly in October leads35

to the early appearance of a strong Siberian cold high, to large amplitudes in the Rossby-wave train and to36

an upward wave activity flux that weakens the stratospheric polar vortex (Polvani and Waugh 2004). Due to37

the relatively long de-correlation time of the latter (Baldwin et al. 2003), this weakening/warming persists38

for several months and propagates downward to the troposphere (Baldwin and Dunkerton 1999), favouring39

a negative tropospheric AO during the following winter months. Since the North Atlantic Oscillation (NAO)40

(Walker and Bliss 1932) can be interpreted as a regional manifestation of the AO (Thompson and Wallace41

1998), this remote snow forcing is also expected to favour anomalous climate conditions over the North42

Atlantic and adjacent land areas, such as the Iberian Peninsula (Zorita et al. 1992; Hurrell 1995; Rodriguez-43

Puebla et al. 2001; Goodess and Jones 2002; Lorenzo et al. 2008).44

This study is dedicated to the regional manifestation of this hemispheric-wide teleconnection for the45

December-to-January (DJF) mean climate on the Iberian Peninsula. To this aim, a robust method for calcu-46

lating the index value of October Eurasian Snow cover increase (Cohen and Jones 2011) is proposed. This47

‘Robust Snow Advance Index’ is shown to be significantly associated with the DJF circulation character-48

istics over the Iberian Peninsula, which in turn control the concurrent mean conditions of 1) precipitation49

amount, 2) diurnal temperature range, 3) sun hours, 4) cloud cover and 5) wind speed on the local/station50
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scale. Finally, it is demonstrated that the latter five variables can be skillfully predicted from Eurasian snow51

cover increase in October (i.e. with a lead-time of one month) using simple linear regression as a statistical52

forecasting method.53

By linking large-scale predictability to local scale predictability for a wide range of atmospheric vari-54

ables, this study strengthens the hypothesis that Eurasian snow cover increase is a meaningful statistical55

predictor for the wintertime-mean climate conditions on the Iberian Peninsula.56

2. Data and Methods57

Two types of predictand data covering the Iberian Peninsula are used in the present study: 1) large-scale58

circulation data for calculating weather type frequencies and 2) in-situ station data.59

The large scale circulation is represented by daily instantaneous mean sea-level pressure (MSLP) fields60

at 12 UTC from the ERA-Interim reanalysis (Dee et al. 2011), which were downloaded from ECMWF’s61

public server (http://data-portal.ecmwf.int/data/d/interim_daily/). In-situ station62

data were provided by the European Climate Assessment and Dataset Project (ECA&D, http://eca.63

knmi.nl/dailydata/predefinedseries.php) (Tank et al. 2002; Klok and Tank 2009), docu-64

menting daily precipitation amount (in mm), sun hours, cloud cover (in octas), wind speed (daily mean65

value in m/s) and diurnal temperature range (DTR), the latter obtained by subtracting the daily minimum66

from the daily maximum temperature and assuming a missing value in case this difference is negative. These67

station data were downloaded from. A time series is excluded if the percentage of missing values exceeds68

the 5% threshold. Finally, December-to-February averages are calculated upon the daily values, not taking69

into account the 29th of February in leap years.70

Following Cohen and Jones (2011), snow cover increase over mid-latitudinal Eurasia (25 − 60◦N and71

0−180◦E) is calculated for each October between 1997 to 2011 (n = 15), using daily satellite retrievals from72

the Interactive Multisensor Snow and Ice Mapping System (Ramsay 1998) obtained at ftp://sidads.73
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colorado.edu/pub/DATASETS/NOAA/G02156/24km/. For a given October, the snow cover ex-74

tension over the above mentioned spatial domain is calculated for each of the 31 days, yielding a sample of75

31 square kilometer values. The index value describing snow cover advance is then defined as the regression76

coefficient (i.e. the slope) of the linear regression line fitted to this sample. A visual inspection of the daily77

snow cover time series revealed the presence of large and rapid snow cover increases, which are especially78

prominent in October 2011 (see last two days in Fig. 1b). Since this snow cover ‘surges’ are outliers from79

a statistical point of view, and since ordinary least-squares regression is known to be sensitive to outliers, a80

robust linear regression method for calculating snow cover increase is proposed as an improvement of the81

original definition of the ‘Snow Advance Index’ (SAI) (Cohen and Jones 2011). This method gives less82

weight to outlier data points when fitting the regression line and essentially removes outlier-related uncer-83

tainty (Street et al. 1988). The slope/regression coefficient obtained from robust linear regression is then84

defined as the ‘Robust Snow Advance Index’ (RSAI) and the 15 index values for October 1997 to 2011 are85

standardized to have zero mean and unit variance. As shown in Fig. 1 for the case of October 2011 (panel86

b) as compared to October 2009 (panel a), the modified index differs considerably from the original one if87

outliers are present in the underlying data. Fig. 1c shows the comparison between both indices for the fifteen88

October months between 1997 (when satellite-sensed snow cover data on daily timescale became available)89

and 2011, exhibiting large differences for October 2011. For a detailed description of the applied robust90

linear regression method, the reader is referred to the appendix of the present study.91

To compute discrete weather types from continuous daily MSLP patterns, the automated Lamb weather92

typing (LWT) approach is applied (Jenkinson and Collison 1977; Jones et al. 1993). The LWT-specifications93

described in Trigo and DaCamara (2000) have been adopted, using daily MSLP data at 12 UTC from ERA-94

Interim covering all DJF-days between 1997/98 and 2011/12. The reanalysis data are linearly interpolated95

to the 16 grid-boxes shown in Fig. 2a), forming a ‘cross’ centered over the Iberian Peninsula. Following96

Trigo and DaCamara (2000), we opt for classifying all days, i.e. work with 26 classes instead of the origi-97

nal 27 classes. Composite maps showing the temporal mean of the MSLP values corresponding to a given98
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weather type (i.e. the conditional mean) have been calculated to assure that the LWTs are physically mean-99

ingful. These composite maps are similar to those obtained in Trigo and DaCamara (2000) and the 14 WTs100

considered in this study are displayed in Fig. 2.101

In contrast to other automated classification techniques like ‘Self Organizing Maps’ (Hewitson and102

Crane 2002; Gutierrez et al. 2005) or ‘k-means clustering’ (Gutierrez et al. 2004), LWT is a rule-based clas-103

sification scheme where the classes are pre-defined based on meteorological expert knowledge (Lamb 1972).104

This is convenient for the present type of study, since applying stochastic classification schemes would lead105

to slight differences in the obtained frequencies of weather types, caused by the fact that some days would106

be assigned to different classes in different realizations. This, in turn, would inhibit a proper estimate of107

statistical significance when correlating weather type frequencies against another variable (Hewitson and108

Crane 2002), that is the RSAI in the present study.109

To reveal the statistical relationship between the RSAI and the target variables on the Iberian Peninsula,110

the Pearson correlation coefficient (hereafter ‘Pearson correlation’ or ‘r’) is used. Due to the short sample111

size (n = 15), which is imposed by the availability of daily snow cover data (Ramsay 1998), outlier-presence112

can falsify the results of the correlation analysis. For instance, the DJF-season 2009/10 was characterized113

by an extremely negative phase of the AO and NAO (Cohen et al. 2010), associated with largely anomalous114

values for the concurrent climate conditions on the Iberian Peninsula (Vicente-Serrano et al. 2011). To115

check the robustness of the results to this ‘outlier-winter’, the non-parametric Spearman rank correlation116

coefficient (hereafter ‘Spearman correlation’ or ‘rs’) is used in addition (Wilks 2006).117

To test if the DJF-mean target variables can be hindcasted from the October RSAI, simple linear re-118

gression is applied in a one-year-out cross-validation framework (Michaelsen 1987), using the RSAI as119

the only predictor variable. Note that the predictor-predictand pairs withheld in each step of the cross-120

validation are not truly independent since all predictor-predictand pairs (i.e. the whole available time series)121

have been used for searching the statistical relationship between October Eurasian snow cover and the DJF-122

mean climate on the Iberian Peninsula (DelSole and Shukla 2009). Consequently, our results obtained from123
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cross-validation (see Sec. 4) might suffer from artificial skill, i.e. might not reflect the skill the statistical124

‘forecasting’ method would obtain in real/future forecast situations (see also Sec. 5). Therefore, when re-125

ferring to statistical ‘predictions’ obtained from cross-validation, we will use the term ‘hindcast’ instead of126

‘forecasts’.127

Note also that using robust- instead of ordinary regression as a statistical forecasting method leads to128

virtually identical results. Therefore, the results obtained from the simpler method (i.e. ordinary regression)129

will be shown in Sec. 4. To exclude the possibility that the results of the one-year-out cross-validation could130

be biased by linear trends, the predictor / predictand samples used to obtain the forecast equation (sample131

size: n− 1) are linearly de-trended and centered to have zero mean. To eliminate a further potential source132

of dependency / artificial skill, the trend and mean removal is repeated in each step of the cross-validation133

(von Storch and Zwiers 1999), i.e. the ith forecast is obtained from predictor / predictand samples having134

no linear trend and zero mean in any case. Note that the trends and means obtained in the ith step of the135

cross-validation are also removed from the ith withheld predictor and predictand values respectively.136

To assess the skill obtained from cross-validation, the hindcasted time series are compared to their ob-137

served counterparts by using the Pearson correlation coefficient. The corresponding results will be referred138

to as ‘hindcast correlations’ (Folland et al. 2012) in the forthcoming. Local statistical significance is as-139

sessed with a two-sided t-test (H0 = zero correlation) and global significance is tested by repeating the140

cross-validation procedure 2000 times. In each repetition, the RSAI time series is randomly re-ordered fol-141

lowing the ranks of a random sample of integers drawn from the standard uniform distribution. Then, the142

percentage of significant local hindcast skill (αlocal = 0.05) obtained by chance is calculated and saved. The143

99th percentile of the resulting sample of 2000 percentage values is the critical value above which global144

significance (αglobal) is assumed at a test-level of 1%.145

Apart from forecasting with the October RSAI, the one-year-out cross-validation approach is addition-146

ally applied for the October SAI, i.e. for the original Snow Advance Index described in Cohen and Jones147

(2011), as well as for the October monthly-mean NAO and AO indices (both based on Principal Compo-148
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nent Analysis) as defined by Hurrell et al. (2003) (http://climatedataguide.ucar.edu/es/149

guidance/hurrell-north-atlantic-oscillation-nao-index-pc-based) and the Cli-150

mate Prediction Center (www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/151

ao_index.html) respectively.152

In addition to the Pearson correlation, the root mean squared error skill score (rmsess) is applied for153

assessing the out-of-sample skill (Jolliffe and Stephenson 2003):154

rmsess = (1− rmse

rmseref
)× 100 (1)

where rmse is the root-mean squared error of the time series predicted by the statistical forecasting method155

described above and rmseref is the rmse obtained from always predicting the climatological mean, which156

is zero in any case since anomalies are forecasted. Thus, rmsess gives the percentage with which the purely157

climatological forecast is outperformed by predicting from October Eurasian snow cover increase.158

3. Relevance of serial correlation159

There are two potential reasons why positive serial correlation could adversely affect the results of the160

present study. First, and if not accounted for (see Eq. 2), positive serial correlation leads to too-many type161

one errors due to an artificial lowering of the correlation coefficient’s p − value, arising from the fact that162

the number of temporally independent data pairs is lower than the sample size (Trenberth 1984; Kristjansson163

et al. 2002). Therefore, the p− value is calculated upon the effective sample size (n∗):164

n∗ = n
1− l1l2
1 + l1l2

(2)

where n is the sample size and l1 (l2) is the lag-1 autocorrelation coefficient of time series 1 (2) (Brether-165

ton et al. 1999; Beranova and Huth 2007). Note that the time series are assumed to follow a first-order166

autoregressive process and that the effective number of degrees of freedom for the two-sided t-test is n∗−2.167
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Second, positive serial correlation questions the applicability of the one-year-out cross-validation ap-168

proach which assumes zero serial correlation for the predictor/predictand time series (Michaelsen 1987).169

To assess the degree to which our forecast skill estimates are affected by serial correlation, Fig. 2 displays170

the spatial distribution of the lag-1 autocorrelation coefficients (r − lag1) obtained from the 61-66 samples171

of each predictand variable (note that the number of station time series slightly varies from one variable to172

another). As can be seen from the figure, the median (bar of the boxplot) ranges between ± 0.1 and the173

interquartile range (box of the boxplot) between ± 0.2 for any of the applied variables, i.e. the samples are174

approximately centered around zero. Due to the limited sample size, critical values for significantly positive175

r− lag1 (note that the t-test should be one-sided since only positive values of r− lag1 decrease the effective176

sample size) would be high even for a local test level of 10%. Therefore, r − lag1 > +0.25 was defined as177

an alternative threshold above which serial correlation would have a measurable effect on cross-validation178

estimates of forecast skill, as was originally proposed by Michaelsen (1987). The percentage of time series179

exceeding this threshold (which will hereafter referred to as ‘problematic’) can be obtained from Tab. 1 for180

each predictand variable under study. For all predictand variables except wind speed, less than 5% of the181

applied time series suffer from a problematic serial correlation.182

To additionally assess if the areal fraction of problematic serial correlations is globally significant, the183

following Monte-Carlo technique is applied separately for each of the 5 predictand variables. First, the184

temporal sequence of all time series corresponding to a given predictand variable is randomly re-ordered185

following the the ranks of a random sample of integers drawn from the standard uniform distribution. Since186

this re-ordering is identical for all time series of a given predictand variable, the spatial autocorrelation187

of the field is maintained whereas the serial correlation is eliminated. Then, the areal fraction for which188

r − lag1 > +0.25 by chance is calculated and saved. After repeating the whole procedure 2000 times, the189

90th (95th) percentile of the resulting 2000 areal fractions for which r−lag1 > +0.25 by chance is assumed190

as the critical value above which the fraction of local r − lag1 > 0.25 obtained from the correct time series191

(i.e. having the correct temporal order) is globally significant at a test-level of 10% (5%). Even for a global192
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test-level of 10% (αglobal = 0.10), in which case the global H0 (‘the observed fraction of r− lag1 > +0.25193

arises from chance’) is easier to reject than for assuming αglobal = 0.05, the H0 cannot be rejected for any194

single predictand variable (see Tab. 1).195

On the basis of these results, we conclude that the hindcast skill estimates obtained from one-year-out196

cross-validation (see Sec. 4) are generally not seriously affected by serial correlation.197

4. Results198

Figure 5 shows the composite maps of the 14 weather types relevant for the present study. For the ease199

of understanding, the panels of the figure are ordered to follow the cardinal directions, i.e. westerly flow200

types are displayed on the left hand side and easterly ones are shown on the right hand side. ‘CNW’ is the201

acronym for ‘cyclonic northwest’, ‘ANE’ for ‘anticyclonic northeast’, etc. Above each panel, two numbers202

are displayed. The first refers to the number of the weather type and the second to its relative frequency203

(in %) over the whole period under study (DJF 1997/98 to 2011/12). For an adequate visualization of the204

direction of the geostrophic flow (hereafter: ‘flow’), 10 isobars are displayed in each panel. The pressure205

gradient can be derived from the color shading.206

With a relative frequency of 55.8%, the wintertime circulation over the Iberian Peninsula is dominated207

by anticyclonic and easterly flow conditions, while cyclonic and westerly flow conditions occur on 22.5%208

of the days. The spatial patterns of the rare hybrid weather types (4, 5, 6 and 9, 10, 11) are similar to their209

more frequently occurring purely directional flow counterparts (1, 2 ,3 and 12, 13, 14). In order to obtain210

an adequate sample size for each of the 15 winter seasons, and similar to the approach applied in Trigo and211

DaCamara (2000), the DJF-frequencies/counts of the cyclonic and westerly flow types on the one hand and212

those of the anticyclonic and easterly flow types on the other are aggregated to two groups with opposite213

vorticity and flow characteristics. The corresponding two composite maps are shown in Fig. 5a) and b).214

With a standard deviation of 12 and 14 days from a mean of 20 and 50 days respectively, the yearly DJF-215
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counts of both groups are characterized by a large inter-annual variability, especially in case of the cyclonic216

and westerly flow group.217

The second row of Fig. 5 indicates that this inter-annual variability is statistically related to Eurasian218

snow cover increase in October as represented by the RSAI, yielding a fraction of explained variance of219

approximately 60% for both of the above mentioned groups. With a Pearson / Spearman correlation of220

+0.76 / +0.83, this relationship is positive for the frequency of cyclonic and westerly flow types (see Fig.221

5c) while an inverse relationship of -0.80 / -0.86 is found for the anticyclonic and easterly flow types (see222

Fig. 5d). Note that the linear trend of the frequency time series has been removed before computing these223

correlations and that the anomalies of the de-trended time series are displayed in Fig.5c+d. The RSAI is224

displayed in standardized anomalies. Since both the Pearson and Spearman correlations are significant at225

a test level of 1%, and since the results for the non-detrended time series (see parentheses in Fig.5c+d) are226

similar, the strong statistical relationships are 1) very unlikely to be a product of chance, 2) insensitive to227

outlier values and 3) insensitive to possible trends in the underlying data.228

To link synoptic and local scale predictability, Figure 5 shows the mean values, conditioned to the two229

defined groups, for precipitation amount, DTR, sun hours, cloud cover and wind speed at the available230

weather stations. In the left column, the mean of the local values pertaining to cyclonic and westerly flow231

days is displayed at each site, while in the right column the corresponding results for the anticyclonic and232

easterly flow days are shown. The mean surface climate associated to cyclonic and westerly flow types is233

generally characterized by wetter conditions, a reduced DTR, less sun hours, cloudier skies and windier234

conditions than it is the case for the anticyclonic and easterly flow types.235

Since it has been shown that Eurasian snow cover increase is a significant predictor of the DJF-circulation236

dynamics over the Iberian Peninsula, which in turn control the concurrent mean conditions of various cli-237

mate variables on the local scale, the latter will be directly hindcasted from the October RSAI in the next238

step of the study. Fig. 6 shows the hindcast correlations obtained from one-year-out cross-validation (see239

Section 2), which are only shown in case they are significant at a test-level of 5% (the critical value is240
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not constant since it depends on the effective sample size n∗ defined in Eq. 2). Note that spurious hind-241

cast correlations are marked by a black cross and that the mean and maximum of the significant values is242

shown in the upper left corner of each panel. With hindcast correlations of up to 0.92, 0.89, 0.88, 0.80 and243

0.79 for precipitation amount, DTR, sun hours, cloud cover and wind speed respectively (see left column244

of Fig.6), the skill of the proposed statistical forecasting method is significant over a large fraction of the245

study area, this fraction being smallest for the case of wind speed. The climatological (no-skill) hindcast is246

outperformed by up to 60, 55, 52, 39 and 37% for the five above mentioned variables (see right column of247

Fig.6), demonstrating that the skill is robust to applying an alternative measure. Note that these results are248

obtained from detrending the predictor and predictand samples in each step of the cross validation. Using249

the original / non-detrended timeseries (not shown) yields similar skill levels, indicating that the results are250

not sensitive to possible trends in the underlying data. Note also that the Pearson correlation between the251

RSAI and the target variables, i.e. the within sample relationships (not shown) are systematically stronger252

than the hindcast correlations obtained from cross-validation. The sign of the correlation between the RSAI253

and the target variables is spatially homogeneous and is shown in the lower left corner of each panel.254

Using the RSAI instead of the outlier sensitive SAI (Cohen and Jones 2011) systematically enhances the255

hindcast skill obtained from cross-validation for all applied variables. Tab. 2 documents this by comparing256

the areal fraction of locally significant (αlocal = 0.05) hindcast correlations obtained from the RSAI to the257

respective areal fraction obtained from the SAI (see columns 2+3). For any of the 5 target variables, the258

99th percentile of the 2000 fractions obtained from the randomly re-shuffled RSAI is much lower than the259

fraction obtained from the ‘correct’ RSAI (i.e. having the correct temporal order). Hence, field significance260

(αlocal = 0.05, αglobal = 0.01) is given in any case. Moreover, the areal fractions obtained from using261

the October-mean NAO (or AO) index as single predictor instead of the RSAI are comparatively low (see262

columns 4+5). This indicates that the hindcast skill stemming from the NAO (or AO) anomaly in October,263

which potentially could persist throughout the following winter months, is negligible.264
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5. Discussion and Conclusions265

This study has provided further statistical evidence for the existence of a formerly unknown lead-lag rela-266

tionship between Eurasian snow cover increase in October and the winter climate on the Iberian Peninsula267

(Brands et al. 2012). It has been found that an anomalously high increase of Eurasian snow cover in October268

favours an above normal frequency of cyclonic and westerly flow weather situations over the Iberian Penin-269

sula during the following December-to-February season, whereas the frequency of anticyclonic and easterly270

flow situations is below normal. With an explained variance of ∼ 60% for both groups of circulation types,271

this statistical relationship is strong and highly significant (α = 0.01). At the local-scale, this favors below-272

normal DJF-mean conditions for diurnal temperature range and sun hours, while the corresponding values273

for cloud cover, wind speed and precipitation amount are above-normal.274

On the basis of these results, it has been additionally shown that the above mentioned variables can275

be skillfully hindcasted using simple linear regression in a one-year-out cross-validation framework. Lo-276

cally significant hindcast correlations of up to 0.92, 0.89, 0.88, 0.80 and 0.79 where found for precipitation277

amount, diurnal temperature range, sun hours, cloud cover and wind speed respectively, the corresponding278

skill patterns being globally significant in any case (αlocal = 0.05, αglobal = 0.01). Applying robust linear279

regression instead of ordinary linear regression (Cohen and Jones 2011) for calculating October snow cover280

increase was found to improve the statistical relationship. Due to the limited sample size, we cannot judge281

the significance of this improvement yet.282

The conducted tests for local and global significance and the consistency of the results for a broad range283

of atmospheric variables on the local and synoptic scale indicate that the described teleconnection is very284

unlikely to be by chance and that the question posed in the title can be affirmed. However, the limited size of285

the samples available to-date (n = 15) poses some restrictions on this conclusion. First, it was not possible286

to test the validity of the teleconnection / skill of the statistical forecasting scheme for a large independent287

time period. Actually, the strength of the statistical link between large-scale circulation indices (such as the288
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NAO or AO) and the surface climate on the Iberian Peninsula is known to be non-stationary (Rodo et al.289

1997; Beranova and Huth 2007) and a similar behaviour would be expected for the teleconnection suggested290

here. In this context, it is also important to note that the data withheld in each step of the one-year-out cross-291

validation is not a surrogate of truly independent/future data since, prior to cross-validation, all data pairs292

had been used for detecting the teleconnection, as is commonly done in this type of studies [see DelSole and293

Shukla (2009) and references therein]. Consequently, the proposed teleconnection should be re-tested in the294

future, when a larger samples of independent predictor-predictand pairs become available (Labitzke et al.295

2006). Finally, it is recommended to assess the atmospheric precursors of October Eurasian snow cover296

increase in order to challenge the causal relationship suggested in the present study.297

Our results are expected to be of value for the purpose of statistical seasonal prediction and its applica-298

tions (Brands 2013). One evident message is to include the Robust Snow Advance Index as an additional299

informative predictor of multiple linear or nonlinear predictions schemes (Tangang et al. 1997; Rodriguez-300

Fonseca and de Castro 2002; Hertig and Jacobeit 2011; Lorenzo et al. 2011; Folland et al. 2012). Our results301

are also expected to be of interest for the numerical climate modeling community. First, general circulation302

models (GCMs) run in seasonal prediction mode are known to have little skill in predicting the boreal winter303

climate (Doblas-Reyes et al. 2009; Frias et al. 2010; Kim et al. 2012). Second, transient GCM simulations304

run over climatic periods of the historical past (Taylor et al. 2012) are known to overestimate the boreal305

winter westerlies over the North Atlantic (Brands et al. 2013; Zappa et al. 2013). These GCM-errors might306

be attributed to poor snow-atmosphere / troposphere-stratosphere coupling and improvements in these fields307

may consequently help to improve the models (Hardiman et al. 2008; Charlton-Perez et al. 2013).308

On the other hand, the purely statistical relationships described in the present study are incomplete309

without assessing the physical background of the teleconnection with idealized numerical model studies. In310

this context, it is important to note that some of the idealized numerical model studies conducted to-date311

do not support the strong two-way troposphere-stratosphere coupling described above (see Sec. 1), but312

suggest a purely tropospheric pathway (Peings et al. 2012; Orsolini et al. 2013). A further argument against313

14



a circulation pathway involving a strong two-way troposphere-stratosphere coupling (Cohen et al. 2007)314

are the findings of Baldwin et al. (2003) who state that only ∼ 20% of the variance of the boreal winter315

AO can be explained by downward propagation from the stratosphere. This is in disagreement with the316

much larger fraction of variance of winter climate anomalies on the Iberian Peninsula that can be explained317

by October Eurasian snow cover increase (e.g. ∼ 60% for the case of weather type frequencies). To318

put it in another way, if one-way downward propagation accounts for only ∼ 20% of the variance of the319

hemispheric-wide circulation in boreal winter (as described by the AO), how is it possible that two-way320

troposphere-stratosphere coupling accounts for a much larger fraction of variance of the regional winter321

climate on the Iberian Peninsula? Consequently, both statistical and numerical modelers can learn from322

each other while further investigating the lead-lag relationships between Eurasian snow cover in fall and the323

boreal winter climate.324
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Appendix335

Consider the regression equation:336

yi = βxi + σei, (3)

where yi is the daily snow cover extension for the day xi, β is the regression coefficient, σ is the error337

scale parameter and ei is the error assumed to be independent and identically distributed. Then, iteratively338

re-weighted least-squares regression is used as follows (Street et al. 1988):339

1. Obtain an initial estimate β̄ for β, as well as the residuals ri by performing a least squares regression340

on yi = βxi341

2. Obtain an estimate σ̄ for σ, where σ̄ = MADr/0.6745, and MADr is the median absolute deviation342

of the residuals from their median.343

3. Re-calculate the residuals ri = (yi − xiβ̄)/σ̄344

4. For anyRi < π, a weighting termwi = sin(ri)/Ri is defined, whereRi = ri/(1.339∗(MADr/0.6745)∗345 √
(1− h)) and h is the leverage obtained from a least-squares fit. Note that this weighting function346

was published by Andrews (1974) and that alternative functions (Huber 2009) yielded virtually iden-347

tical results.348

5. Update the estimate β̄ as well as the residuals ri by performing a least squares regression with the349

weights wi.350

6. Repeat steps (2) to (5) until MADr is minimized.351

The ‘Robust Snow Advance Index’ (RSAI) is then defined as the regression coefficient β obtained352

from this iterative optimization procedure, performed with the robustfit.m function of the programming353
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environment Matlab R©. Finally, the 15 RSAI index values obtained for each October are z-transformed to354

yield standardized anomalies.355
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Table 1: Fraction (in %) of DJF-mean time series having a lag-1 autocorrelation coefficient (r −

lag1) greater than +0.25. Row 1: name of the predictand variable and number of available time

series / stations. Row 2: areal fraction for the original time series. Row 3: 90th percentile of 2000

areal fractions obtained from randomly re-shuffling the DJF-mean values, i.e. critical value above

which areal fractions in row 2 are globally significant (αglobal = 0.10, see text for more details).

For each variable, the lowest areal fraction is printed in bold

Predictand Variable r − lag1 > +0.25 crit. value

Precipitation amount (64) 0 22

Diurnal temperature range (66) 5 24

Sun hours (61) 5 26

Cloud cover (61) 3 28

Wind speed (62) 19 21
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Table 2: Fraction of stations (in %) where the hindcast correlations obtained from cross-validation

are locally significant (αlocal = 0.05). Column 1: Predictand/target variable. Columns 2-5: Frac-

tion obtained from predicting with the October RSAI and SAI indices as well as with the October

monthly-mean AO and NAO indices. For each variable, the highest areal fraction is printed in

bold. Results are for DJF-mean values of the predictand variable.

Predictand Variable RSAI SAI AO NAO

Precipitation amount 56 52 0 2

Diurnal temperature range 55 52 8 0

Sun hours 69 53 7 2

Cloud cover 72 49 3 3

Wind speed 36 27 7 5
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Figure 1: Eurasian snow cover for each day in (a) October 2009 and (b) October 2011 and the least

squares fits obtained by ordinary vs. robust linear regression. The corresponding index values

describing snow cover increase, defined as standardized anomalies of the respective regression

coefficients are also displayed (SAI and RSAI). In October 2011, the differences between both

index values are considerable due to outlier values at the end of the month. A comparison of the

index time series and the corresponding Spearman correlation coefficient (rs) are shown in panel

(c)
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Figure 2: Composite maps for the circulation classes obtained from automated Lamb weather

typing for the DJF days between 1997/98 to 2011/12, calculated upon instantaneous 12 UTC MSLP

data from ERA-Interim. Only the 14 (out of 26) weather types relevant for the present study are

displayed. On the left hand side, the cyclonic and westerly flow types are shown, on the right

hand side, the anticyclonic and easterly flow types are shown. The panels are ordered to follow the

cardinal directions and the total relative frequency of each WT is displayed above each panel. The

coordinates used for computing the weather types are shown in panel (a).
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Figure 3: Distribution of the lag-1 autocorrelation coefficients of the applied time series, displayed

by separate boxplots for each predictand variable. Bar: median, box: IQR, lower / upper limit of

the whisker: ‘last’ data point not exceeding 1.5 times the IQR below / above the lower / upper

quartile, cross: data point exceeding this threshold (i.e. outlier). For each predictand variable, the

number of available station time series is displayed in parentheses
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Figure 4: (a)+(b) Composite maps for the cyclonic and westerly flow weather types (see left hand

side of Fig. 3) vs. anticyclonic and easterly flow weather types (see right hand side of Fig. 3);

(c)+(d) Relationship between the Robust Snow Advance Index (RSAI) for October and the DJF-

frequency of the above mentioned weather types (in days); the time series for these DJF-counts

are detrended and centered to have zero-mean. Also shown are the Pearson (r) and Spearman (rs)

correlation coefficients. Correlation coefficients for the original/non-detrended predictand time

series are shown in parentheses.
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Figure 5: Left column: DJF-mean values conditioned on days corresponding to cyclonic and west-

erly flow weather types (left hand side of Fig. 3), Right column: DJF-mean values conditioned

on days corresponding to anticyclonic and easterly weather types (right hand side of Fig. 3), for

(a)+(b) precipitation amount, (c)+(d) diurnal temperature range, (e)+(f) sun hours, (g)+(h) cloud

cover, (i)+(j) wind speed. The respective spatial mean values are displayed in the upper left corner

of each panel.
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c) mean = 0.70 max = 0.89 d) mean = 20% max = 55%

e) mean = 0.68 max = 0.88 f) mean = 23% max = 52%

g) mean = 0.68 max = 0.80 h) mean = 20% max = 39%

i) mean = 0.67 max = 0.79 j) mean = 15% max = 37%

Figure 6: Hindcast skill obtained from cross-validation for: (a+b) precipitation amount, (c+d)

diurnal temperature range (DTR), (e+f) sun hours, (g+h) cloud cover and (i+j) wind speed (DJF-

mean values). Only significant (αlocal = 0.05) hindcast correlations (first column) and positive

root mean square error skill scores (second column) are shown. The mean and maximum of the

sig. hindcast correlations / positive skill scores and the sign of the Pearson correlation between the

RSAI and the target variables are also given. 33


